### True Discount and Banker's Discount problems tricks in Hindi | fast track formulae for problem solving.

TRUE DISCOUNT AND BANKER'S DISCOUNT TRICKS IN HINDI

TRUE DISCOUNT 1). वास्तविक बट्टा = मिश्रधन - वर्तमान धन
2). यदि ब्याज की दर r% वार्षिक , समय t व वर्तमान धन (pw) है, तो वास्तविक बट्टा = PW×r×t/100
3). यदि r% तथा समय t के बाद देय धन A है, तो तत्काल धन pw = 100×A/(100+r.t)
4). यदि देय धन A पर r% व समय t दिए गए है, तो वास्तविक बट्टा = A.r.t /(100+r.t)
5). यदि किसी निश्चित समय के पश्चात निश्चित वार्षिक दर पर, देय धन पर वास्तविक बट्टा (TD) व समान समय व दर के लिए साधारण ब्याज (SI) हैं, तो देय धन A =      SI × TD/(SI - TD)
6). यदि t समय पश्चात r% वार्षिक दर पर, देय धन पर वास्तविक बट्टा (TD) व साधारण ब्याज (SI) है , तो -  SI - TD = TD×r×t/100
7). t वर्ष बाद r% चक्रवृद्धि दर पर देय धन A का तत्काल धन (PW) = A/(1+r/100)^t   व वास्तविक बट्टा = A - PW
BANKER'S DISCOUNT1). महाजनी बट्टा = शेष समय (समाप्त न हुए समय) के लिए बिल पर ब्याज = बिल की राशि × दर × शेष समय /100
2). महाजनी लाभ = महाजनी बट्टा - वास्तविक बट्टा
3). यदि बिल का मान / अंकित मूल्य A है, समय t व दर r% है, तो महाजनी बट्टा = A×r×t/100
4).…

## ARITHMETIC FORMULAE ON SIMPLE INTEREST

1). Principle = Simple interest ×100/rate×Time

2). Simple interest = principle × rate × time/100

3). Rate = simple interest ×100/principle × time

4). Time = simple interest × 100/ principle × rate

5). Amount = principle + simple interest

6). Principle = amount - simple interest

7). Principle = amount ×100/[100+(rate×time)]

8). If r1% changes to r2% and in t years Rs x receive more , then principle is = 100×x/(r2 - r1)t

9). Time taken by the principle to become n time of itself with r% simple interest is = 100(n-1)/r

10). If any principle become n times of itself in t years then the interest rate = 100(n-1)/t

11). If any principle become n1 times of itself with r1% in any time period , then in same time period, rate required to become n2 times of itself is
= (n2-1)r1/(n1-1)%

12).  If any principle become n1 times of itself in t1 time period in any interest rate, then in same interest rate, time period required to become n2 times of itself is = (n2-1)t1/(n1-1)

13). From the two different banks, Rs x is the difference between in the received interest on the principle P at the time period t , then the difference in their rate of interest is = 100x/Pt

14). If a certain principle is invested at a certain interest rate for t years , then the same principle if invested at r%(more or less) then anyone get Rs x (more or less) , then the principle is = x×100/rt

15). The principle is invested in two parts in such a way that interest received on the first part at r1% interest rate for t1 time period is equal to the interest received on the second part at r2% interest rate for t2 time period , then the ratio of their principle is = 1/r1t1 : 1/r2t2

16). If any principle become Rs x in t1 time period and become Rs y in t2 time period , then the principle is = (xt2 - yt1)/(t2-t1) , and the rate of interest is = (y-x)100/(xt2 - yt1)

17). The annual payment that will discharge a debt of Rs P due in T yrs at the interest rate of r% is
= 100P/[100T + rT(T - 1)/2]

18). If A1 is the amount of principle P at time period t with r1% interest rate , and A2 is the amount of principle if rate of simple interest is r2% , then principle P is = (A2r1 - A1r2)/(r1 - r2) and time period t is = (A2 - A1)100/(A2r1 - A1r2)

19). A1 is the amount of principle P in time period t1 with any interest rate r% , and A2 is the amount of principle if time period is t2 , then principle P is = (A2t1 - A1t2)/(t1 - t2) and interest rate is
= (A2 - A1)100/(A2t1 - A1t2)

20). SI1 is the simple interest of a principle P1 in t1 years with r1% interest rate. And SI2 is the simple interest of a principle P2 in t2 years with r2% interest rate , then difference in simple interest is
SI2 - SI1  = (P2r2t2 - P1r1t1)/100

If only time changes and all parameters are constant then-
*. SI2 - SI1 = Pr(t2 - t1)/100

*. If only rates changes then-
SI2 - SI1 = Pt(r2 - r1)/100

*. If only principle changes then -
SI2 - SI1 = rt(P2 - P1)/100

IF TWO PARAMETERS CHANGES

*. Only change in rate and time then-
SI2 - SI1 = P(r2t2 - r1t1)/100

*. Only change in principle and time
SI2 - SI1 = r(P2t2 - P1t1)/100

*. Only change in principle and rate
SI2 - SI1 = t(P2r2 - P1r1)/100

21). If 1/x part of a principle P is lent out at r1% rate, 1/y part is at r2% rate and remaining 1/z part is at r3% interest rate , and in this way simple interest received is SI , then
Principle P is = SI × 100/(r1/x +r2/y + r3/z)

22). The rate on which simple interest become n times of principle in t years is = 100n/t

23). Simple interest if amount is given -
SI = A × r × t/(100 + rt)

24). If a principle P is given to the bank in n equal installments at r% rate per annum , then amount of each installment is = P(1+ nr/100)

#### 25) Mind it

*. If rate of interest is half yearly then rate and time is = r/2 and 2t

*. If rate of interest is quarterly then rate and time is = r/4 and 4t

*. If rate of interest is monthly then rate and time is = r/12 and 12t

### Boat and stream short-tricks in Hindi | Fast track arithmetic formulae for competitive examination.

BOAT AND STREAM (नाव एवं धारा)
1). यदि शांत जल में नाव या तैराक की चाल x किमी/घंटा व धारा की चाल y किमी/घंटा है, तो धारा के अनुकूल नाव अथवा तैराक की चाल = (x+y) किमी/घंटा
2). धारा के प्रतिकूल नाव अथवा तैराक की चाल = (x-y) किमी /घंटा
3). नाव की चाल = (अनुप्रवाह चाल + उद्धर्वप्रवाह चाल)/2
4). धारा की चाल =  (अनुप्रवाह चाल - उद्धर्वप्रवाह चाल)/2
5). यदि धारा की चाल a किमी/घंटा है, तथा किसी नाव अथवा तैराक को उद्धर्वप्रवाह जाने में अनुप्रवाह जाने के समय का n गुना समय लगता है,(समान दूरी के लिए), तो शांत जल में नाव की चाल = a(n+1)/(n-1) किमी/घंटा
6). शांत जल में किसी नाव की चाल x किमी/घंटा व धारा की चाल y किमी/घंटा है, यदि नाव द्वारा एक स्थान से दूसरे स्थान तक आने व जाने में T समय लगता है, तो दोनो स्थानों के बीच की दूरी = T(x^2 - y^2)/2x km
7). कोई नाव अनुप्रवाह में कोई दूरी a घंटे में तय करती है, तथा वापस आने में b घंटे लेती है, यदि नाव कि चाल c किमी/घंटा है, तो शांत जल में नाव की चाल = c(a+b)/(b-a) km/h
8). यदि शांत जल में नाव की चाल a किमी/घंटा है, तथा वह b किमी/घंटा की चाल से बहती हुई नदी में गत…

### Emergence of British East India Company as an Imperialist Political Power in India

EMERGENCE OF BRITISH EAST INDIA COMPANY AS AN IMPERIALIST POLITICAL POWER IN INDIA
Dynamically changing India during early eighteenth century had a substantially growing economy under the authority of Mughal emperor Aurangzeb. But after his demise in 1707, several Mughal governors established their control over many regional kingdoms by exerting their authority. By the second half of eighteen century, British East India Company emerged as a political power in India after deposing regional powers and dominating over Mughal rulers. The present article attempts to analyze the reasons for emergence of British East India Company as an imperial political power in India and their diplomatic policies of territorial expansion. In addition to this, I briefly highlighted the Charter Acts (1773, 1793, 1813, 1833 and 1853) to trace its impact on the working process of Company.Establishment of East India Company in India

In 1600, British East India Company received royal charter or exclusive license…

### CORONA VIRUS, history of origin , discovery , infection mechanism, symptoms and treatment.

Today we are going to talk about a virus , which is spreading very fastly all over the world. The virus which we are going to talk about is the CORONA VIRUS. So today we will talk about everything of this virus. So let's starts ...

OVERVIEW OF CORONAVIRUS
According to the biological study , Coronavirus is a cluster of viruses that causes diseases in birds and mammals. Therefore humans are also mammals then in human being this viruses cause respiratory infections , and one of the respiratory infections is mild common cold. Coronavirus can lead to diarrhea in cows and pigs but in chicken they can cause upper respiratory infections. Currently there is no vaccine or antiviral drugs for the treatment of diseases caused by Coronavirus.
BIOLOGICAL INTRODUCTION OF coV
The family of Coronavirus is coronaviridae, and it's subfamily is Orthocoronavirinae and order is Nidovirales, Coronavirus is a member of Orthocoronavirinae subfamily. All Coronavirus is coated with positive sense single …

### Three dimensional geometry (part-1) | study material for IIT JEE | concept booster , chapter highlights.

THREE DIMENSIONAL GEOMETRY

ORIGIN
In the following diagram X'OX , Y'OY and Z'OZ are three mutually perpendicular lines , which intersect at point O. Then the point O is called origin.
COORDINATE AXES
In the above diagram X'OX is called the X axes, Y'OY is called the Y axes and Z'OZ is called the Z axes.
COORDINATE PLANES
1). XOY is called the XY plane. 2). YOZ is called the YZ plane. 3). ZOX is called the ZX plane.
If all these three are taken together then it is called the coordinate planes. These coordinates planes divides the space into 8 parts and these parts are called octants.
COORDINATES  Let's take a any point P in the space. Draw PL , PM and PN perpendicularly to the XY, YZ and ZX planes, then
1). LP is called the X - coordinate of point P. 2). MP is called the Y - coordinate of point P. 3). NP is called the Z - coordinate of the point P.
When these three coordinates are taken together, then it is called coordinates of the point P.
SIGN CONVENTI…

### Speed , Distance and Time problems tricks in Hindi | fast track arithmetic formulae for problem solving.

SPEED , DISTANCE AND TIME PROBLEMS TRICKS IN HINDI
1). दूरी = चाल × समय
2). समय = दूरी/चाल
3). चाल = दूरी/समय
4). किलोमीटर को मील बनाने के लिए गुना किया जाता है =       5/8 से
5). मील को किलोमीटर बनाने के लिए गुना किया जाता है =       8/5 से
6). फुट - सेकंड को मील - घंटा बनाने के लिए गुना किया जाता है = 15/22 से
7). मील - घंटा को फुट - सेकंड बनाने के लिए गुना किया जाता है = 22/15 से
8). मी - सेकंड को किमी - घंटा बनाने के लिए गुना किया जाता है = 18/5 से
9). किमी - घंटा को मी - सेकंड बनाने के लिए गुना किया जाता है = 5/18 से
10). यदि एक व्यक्ति दो निश्चित स्थानों के बीच की दूरी a किमी/घंटा की चाल से खत्म करता है, तो t1 घंटे देर से पहुंचता है, तथा जब b किमी/घंटा की चाल से तय करता है, तब वह t2 घण्टे पहले पहुंचता है, तो दोनो स्थानों के बीच की दूरी =     ab(t1+t2)/(b-a) km
11). यदि कोई व्यक्ति a km/h की चाल से चलता है, तो वह अपनी मंजिल पर t1 घंटे लेट पहुंचता है, अगली बार वह अपनी चाल में b km/h की वृद्धि करता है, तो वह t2 घंटे लेट पहुंचता है, तब उसके द्वारा तय की गई दूरी = a(a+b)(t1-t2)/b
12). दो व्यक्ति X …