Skip to main content


True Discount and Banker's Discount problems tricks in Hindi | fast track formulae for problem solving.


TRUE DISCOUNT 1). वास्तविक बट्टा = मिश्रधन - वर्तमान धन
2). यदि ब्याज की दर r% वार्षिक , समय t व वर्तमान धन (pw) है, तो वास्तविक बट्टा = PW×r×t/100
3). यदि r% तथा समय t के बाद देय धन A है, तो तत्काल धन pw = 100×A/(100+r.t)
4). यदि देय धन A पर r% व समय t दिए गए है, तो वास्तविक बट्टा = A.r.t /(100+r.t)
5). यदि किसी निश्चित समय के पश्चात निश्चित वार्षिक दर पर, देय धन पर वास्तविक बट्टा (TD) व समान समय व दर के लिए साधारण ब्याज (SI) हैं, तो देय धन A =      SI × TD/(SI - TD)
6). यदि t समय पश्चात r% वार्षिक दर पर, देय धन पर वास्तविक बट्टा (TD) व साधारण ब्याज (SI) है , तो -  SI - TD = TD×r×t/100
7). t वर्ष बाद r% चक्रवृद्धि दर पर देय धन A का तत्काल धन (PW) = A/(1+r/100)^t   व वास्तविक बट्टा = A - PW
BANKER'S DISCOUNT1). महाजनी बट्टा = शेष समय (समाप्त न हुए समय) के लिए बिल पर ब्याज = बिल की राशि × दर × शेष समय /100
2). महाजनी लाभ = महाजनी बट्टा - वास्तविक बट्टा
3). यदि बिल का मान / अंकित मूल्य A है, समय t व दर r% है, तो महाजनी बट्टा = A×r×t/100

Archimedes principle , understanding the basic concepts and it's explanation.

Today we are going to talk about the concept of Archimedes principle, this is a very important and interesting phenomenon of hydrostatic.
There are lot of application of this principle in our daily life. Some application are list below:
The concept of Archimedes principle ,  a simplified explanation//
1). The floatation of boat and ships on the surface of water.
2). Upward motion of air bubbles in the water.
3). Sudden upthrust in a mug when it is dipped perpendicularly in the water.
4). Not sinking of a air filled balloon if it is dipped in the water , and many more application can be found if we start searching in our surroundings.
So, question is what Archimedes principle states?
If we talk about it then Archimedes principle simply states that if a object is immersed fully or partially in the fluid (liquid or gas) then it suffer a upward buoyant force, that is equal the weight of the fluid which object displaced. This concept is given by a Greek philosopher Archimedes in 250 BCE
The concept of Archimedes principle ,  a simplified explanation//


When a object is immersed fully or partially in the fluid then it is observed that it's original weight gets reduced. Then Archimedes thought that somewhere fluid is applying a upward force that opposes object gravitational weight. Then Archimedes perform a experiment to find the magnitude of upward force. He take a bucket and filled it to its brim with water, then he submerged a spherical hollow ball into it , then he noticed that some amount of water fell down from the bucket, then he measures the volume of displaced water or fallen water and he find its weight, then he find the upward force by multiplying it by acceleration due to gravity, which is acting on the ball.
After calculating all , then he finds that the upward force in the ball is equal to the weight of the displaced water. And his upward force or upthrust is termed as buoyant force. After performing all these experiments he says that if a body is immersed fully or partially in the fluid then the volume of fluid displaced is equal to the volume of the object, and the weight of the volume displaced is equal to the buoyant force which act as the upthrust and used to opposes the gravitational pull and give a upward motion.
Thus, the net force on the object is the difference between the magnitude of buoyant force and it's gravitational weight.
If this difference is positive then then buoyant force become dominant and object rises up. If this difference is negative then gravitational weight become dominant and then object start sinking. If this difference gives zero then object neither rises nor sink , means object become static at that position. And Archimedes also observed that due to buoyant force object experience a apparent weight loss which is equal to the weight of the displaced fluid, when an object are used to be sink fully or partially in the fluid.

Some mathematical operations
The concept of Archimedes principle ,  a simplified explanation//
Let's take a spherical ball of density ρ and radius R , and a fluid of density σ
Then the volume of the sphere is = (4/3)πR^3
And weight of the ball is = Mg = Vρg
             = (4/3)πR^3ρg
And weight of the displaced fluid is= (4/3)πR^3σg = Vσg = buoyant force
 If ;
Buoyant force > gravitational weight = rises up.
Buoyant force < gravitational weight = sink
Buoyant force = gravitational force = static
Neither sink nor rise, remains at same position.

  • In the above formula only density changes and all the remaining terms are same, it means sinkation and floatation depends only on the density of objects ρ and density of the fluid σ , if ρ > σ then object sink, and if ρ < σ then object float , if ρ = σ then the object remains at the same position.So these are all about the Archimedes principle.



Boat and stream short-tricks in Hindi | Fast track arithmetic formulae for competitive examination.

BOAT AND STREAM (नाव एवं धारा)
1). यदि शांत जल में नाव या तैराक की चाल x किमी/घंटा व धारा की चाल y किमी/घंटा है, तो धारा के अनुकूल नाव अथवा तैराक की चाल = (x+y) किमी/घंटा
2). धारा के प्रतिकूल नाव अथवा तैराक की चाल = (x-y) किमी /घंटा
3). नाव की चाल = (अनुप्रवाह चाल + उद्धर्वप्रवाह चाल)/2
4). धारा की चाल =  (अनुप्रवाह चाल - उद्धर्वप्रवाह चाल)/2
5). यदि धारा की चाल a किमी/घंटा है, तथा किसी नाव अथवा तैराक को उद्धर्वप्रवाह जाने में अनुप्रवाह जाने के समय का n गुना समय लगता है,(समान दूरी के लिए), तो शांत जल में नाव की चाल = a(n+1)/(n-1) किमी/घंटा
6). शांत जल में किसी नाव की चाल x किमी/घंटा व धारा की चाल y किमी/घंटा है, यदि नाव द्वारा एक स्थान से दूसरे स्थान तक आने व जाने में T समय लगता है, तो दोनो स्थानों के बीच की दूरी = T(x^2 - y^2)/2x km
7). कोई नाव अनुप्रवाह में कोई दूरी a घंटे में तय करती है, तथा वापस आने में b घंटे लेती है, यदि नाव कि चाल c किमी/घंटा है, तो शांत जल में नाव की चाल = c(a+b)/(b-a) km/h
8). यदि शांत जल में नाव की चाल a किमी/घंटा है, तथा वह b किमी/घंटा की चाल से बहती हुई नदी में गत…

Emergence of British East India Company as an Imperialist Political Power in India

Dynamically changing India during early eighteenth century had a substantially growing economy under the authority of Mughal emperor Aurangzeb. But after his demise in 1707, several Mughal governors established their control over many regional kingdoms by exerting their authority. By the second half of eighteen century, British East India Company emerged as a political power in India after deposing regional powers and dominating over Mughal rulers. The present article attempts to analyze the reasons for emergence of British East India Company as an imperial political power in India and their diplomatic policies of territorial expansion. In addition to this, I briefly highlighted the Charter Acts (1773, 1793, 1813, 1833 and 1853) to trace its impact on the working process of Company.Establishment of East India Company in India

In 1600, British East India Company received royal charter or exclusive license…

Three dimensional geometry (part-1) | study material for IIT JEE | concept booster , chapter highlights.


In the following diagram X'OX , Y'OY and Z'OZ are three mutually perpendicular lines , which intersect at point O. Then the point O is called origin.
In the above diagram X'OX is called the X axes, Y'OY is called the Y axes and Z'OZ is called the Z axes.
1). XOY is called the XY plane. 2). YOZ is called the YZ plane. 3). ZOX is called the ZX plane.
If all these three are taken together then it is called the coordinate planes. These coordinates planes divides the space into 8 parts and these parts are called octants.
COORDINATES  Let's take a any point P in the space. Draw PL , PM and PN perpendicularly to the XY, YZ and ZX planes, then
1). LP is called the X - coordinate of point P. 2). MP is called the Y - coordinate of point P. 3). NP is called the Z - coordinate of the point P.
When these three coordinates are taken together, then it is called coordinates of the point P.

A detailed unit conversion table in Hindi.

CENTIMETRE GRAM SECOND SYSTEM (CGS)1). MEASUREMENT OF LENGTH (लंबाई के माप) 10 millimeter = 1 centimetres10 centimetre = 1 decimetres  10 decimetre = 1 metres 10 metre = 1 decametres 10 decametres = 1 hectometres 10 hectometres = 1 kilometres 10 kilometres = 1 miriametresMEASUREMENTS OF AREAS ( क्षेत्रफल की माप )  100 millimetre sq. = 1 centimetre sq.
 100 centimetre sq. = 1 decimetres sq. 100 decimetres sq. = 1 metre sq. 100 metre sq. = 1 decametres sq  100 decametres sq. = 1 hectometres sq. 100 hectometres sq. = 1 kilometres sq. 100 kilometres sq. = 1 miriametres sq.
MEASUREMENTS OF VOLUME ( आयतन की माप) 1000 millimetre cube. = 1 centimetre cube.
 1000 centimetre cube. = 1 decimetres cube. 1000 decimetres cube. = 1 metre cube. 1000 metre cube. = 1 decametres cube. 1000 decametres cube. = 1 hectometres cube. 1000 hectometres cube. = 1 kilometres cube. 1000 kilometres cube. = 1 miriametres cube.
MEASUREMENTS OF VOLUME OF LIQUIDS  (द्रव्य के आयतन का माप) 10 millilitre=…

THE GENERAL THEORY OF RELATIVITY | A Unique way to explain gravitational phenomenon.

Today we are going to talk about a very important and revolutionary concept that is THE GENERAL THEORY OF RELATIVITY.
This theory came into existence after 10 years of special theory of relativity (1905), and published by Albert Einstein in 1915.
This theory generalise the special theory of relativity and refines the Newton's laws of universal gravitation.
After coming this theory people's perspective about space and time has been changed completely. And this theory give a new vision to understand the spacetime geometry.
This theory gives a unified description of gravity as a geometrical properties of space and time.
This theory helps us to explain some cosmological phenomenon that is ,

* why small planets revolve around the big stars?
* Why everything in this universe is keep moving?
* Why mostly planets and stars are spherical in shape?
* Why does gravity create?
* Why does time become slow near the higher gravitating mass. Ie. Gravitational time dilation.
And gravitational…